Se o desempenho deste código é crítico, então poderia fazer sentido para evitar alocações de pilha para Candle s. Acho que a maneira mais razoável de fazer isso seria fazer Candle em uma estrutura. Embora os tipos de valores mutáveis sejam maus. Assim que eu refatoraria também a vela para ser imutável. Isso também significa que a implementação de newestCandle teria que mudar, provavelmente em um par de campos duplos (ou, alternativamente, uma classe mutable e resettable separada). Eu não vejo qualquer outro problema potencial de desempenho em seu código. Mas quando se trata de desempenho, você deve sempre confiar em perfis, não sua intuição (ou alguém elses). Além disso, eu não gosto de alguns nomes de seus métodos. Especificamente: ValueUpdated. Nomes de métodos geralmente devem estar no formulário fazer algo, não aconteceu algo. Então eu acho que um nome melhor seria UpdateValue. Adicionar. Modificar. Estas são as duas operações fundamentais do seu MovingAverage e eu acho que esses nomes não expressam o significado bem. Eu chamaria-lhes algo como MoveAndSetCurrent e SetCurrent. respectivamente. Embora tal nomeação indica que as operações fundamentais devem ser bastante Move e SetCurrent. Em estatísticas uma média móvel simples é um algoritmo que calcula a média não ponderada das últimas n amostras. O parâmetro n é muitas vezes chamado de tamanho de janela, porque o algoritmo pode ser pensado como uma janela que desliza sobre os pontos de dados. Usando uma formulação recursiva do algoritmo, o número de operações necessário por amostra é reduzido a uma adição, uma subtração e uma divisão. Uma vez que a formulação é independente do tamanho da janela n. A complexidade de tempo de execução é O (1). I. e. constante. A fórmula recursiva da média móvel não ponderada é, onde avg é a média móvel e x representa um ponto de dados. Assim, sempre que a janela desliza para a direita, um ponto de dados, a cauda, desce e um ponto de dados, a cabeça, move-se. Implementação Uma implementação da média móvel simples tem que levar em conta o seguinte: Algoritmo de inicialização Contanto que A janela não está totalmente preenchida com valores, a fórmula recursiva falha. Armazenamento O acesso ao elemento da cauda é necessário, o que, dependendo da implementação, requer um armazenamento de n elementos. Minha implementação usa a fórmula apresentada quando a janela é totalmente preenchida com valores e, de outra forma, muda para a fórmula, que atualiza a média recalculando a soma dos elementos anteriores. Observe que isso pode levar a instabilidades numéricas devido à aritmética de ponto flutuante. No que diz respeito ao consumo de memória, a implementação usa iteradores para acompanhar os elementos da cabeça e da cauda. Isso leva a uma implementação com requisitos de memória constante independentes do tamanho da janela. Aqui está o procedimento de atualização que desliza a janela para a direita. Na maioria das coleções invalidar seus enumeradores quando a coleção subjacente é modificada. A implementação, no entanto, depende de enumeradores válidos. Especialmente em aplicativos baseados em fluxo contínuo, as necessidades de coleta subjacentes são modificadas quando um novo elemento chega. Uma maneira de lidar com isso é criar uma coleção de tamanho fixo circular simples de tamanho n1 que nunca invalida seus iteradores e, alternativamente, adicionar um elemento e chamar Shift. Eu gostaria de descobrir como realmente implementar isso, como a função de teste é muito confuso para me8230 Eu preciso converter dados para matriz, em seguida, execute SMA sma novo SMA (20, matriz) para um período de 20 SMA Como faço para lidar Shift () É necessário implementar construtores. (Desculpe pela confusão). Não você precisa don8217t converter seus dados em uma matriz, desde que seus dados implementa IEnumerable1 eo tipo enumerado é duplo. No que diz respeito à sua mensagem privada está em causa, você precisa converter o DataRow para algo que é enumerável de valores duplos. Sua abordagem funciona. Shift, desliza a janela uma posição para a esquerda. Para um conjunto de dados de dizer 40 valores e um período de 20 SMA você tem 21 posições a janela se encaixa em (40 8211 20 1). Cada vez que você chama Shift () a janela é movida para a esquerda por uma posição e Average () retorna o SMA para a posição atual da janela. Ou seja, a média não ponderada de todos os valores dentro da janela. Além disso, minha implementação permite calcular o SMA mesmo se a janela não estiver totalmente preenchida no início. Então, em essência Espero que isso ajude. Quaisquer outras perguntas AVISO DE DIREITOS DE AUTOR Christoph Heindl e cheind. wordpress, 2009-2012. O uso não autorizado e / ou a duplicação deste material sem permissão expressa e por escrito deste autor de blogs e / ou proprietário é estritamente proibido. Excertos e links podem ser usados, desde que crédito completo e claro seja dado a Christoph Heindl e cheind. wordpress com direção apropriada e específica para o conteúdo original. Recent Posts Arquivos O cientista e engenheiros guia para processamento de sinal digital Por Steven W. Smith, Ph. D. Uma grande vantagem do filtro de média móvel é que ele pode ser implementado com um algoritmo que é muito rápido. Para entender esse algoritmo, imagine passar um sinal de entrada, x, através de um filtro de média móvel de sete pontos para formar um sinal de saída, y. Agora, veja como dois pontos de saída adjacentes, y 50 e y 51, são calculados: Estes são quase os mesmos pontos de cálculo x 48 a x 53 devem ser adicionados para y 50 e novamente para y 51. Se y 50 já foi calculado , A maneira mais eficiente de calcular y 51 é: Uma vez que y 51 tenha sido encontrado usando y 50, então y 52 pode ser calculado a partir da amostra y 51, e assim por diante. Depois que o primeiro ponto é calculado em y, todos os outros pontos podem ser encontrados com apenas uma única adição e subtração por ponto. Isso pode ser expresso na equação: Observe que esta equação usa duas fontes de dados para calcular cada ponto na saída: pontos a partir da entrada e pontos previamente calculados a partir da saída. Isso é chamado de equação recursiva, o que significa que o resultado de um cálculo é usado em cálculos futuros. (O termo recursivo também tem outros significados, especialmente na informática). O Capítulo 19 discute uma variedade de filtros recursivos em mais detalhes. Lembre-se de que o filtro recursivo de média móvel é muito diferente dos filtros recursivos típicos. Em particular, a maioria dos filtros recursivos tem uma resposta de impulso infinitamente longa (IIR), composta de sinusoides e exponenciais. A resposta de impulso da média móvel é um pulso retangular (resposta de impulso finito, ou FIR). Este algoritmo é mais rápido que outros filtros digitais por várias razões. Primeiro, há apenas dois cálculos por ponto, independentemente do comprimento do kernel do filtro. Em segundo lugar, a adição e subtração são as únicas operações matemáticas necessárias, enquanto a maioria dos filtros digitais requerem multiplicação demorada. Em terceiro lugar, o esquema de indexação é muito simples. Cada índice na Eq. 15-3 é encontrado adicionando ou subtraindo constantes inteiras que podem ser calculadas antes do início da filtragem (isto é, p e q). Em seguida, todo o algoritmo pode ser realizado com representação de inteiro. Dependendo do hardware usado, os inteiros podem ser mais do que uma ordem de magnitude mais rápida do que o ponto flutuante. Surpreendentemente, a representação de números inteiros funciona melhor do que o ponto flutuante com este algoritmo, além de ser mais rápido. O erro round-off de aritmética de ponto flutuante pode produzir resultados inesperados se você não for cuidadoso. Por exemplo, imagine um sinal de 10.000 amostras sendo filtrado com este método. A última amostra no sinal filtrado contém o erro acumulado de 10.000 adições e 10.000 subtracções. Isso aparece no sinal de saída como um deslocamento à deriva. Os inteiros não têm esse problema porque não há nenhum erro round-off na aritmética. Se você deve usar o ponto flutuante com este algoritmo, o programa na Tabela 15-2 mostra como usar um acumulador de dupla precisão para eliminar este drift. Moving Average - MA BREAKING DOWN Média Móvel - MA Como um exemplo SMA, considere uma segurança com o Após os preços de fechamento durante 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29 , 28 A MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, o que ocorre quando um MA de curto prazo cruza abaixo de um MA. Im de longo prazo não certeza da solução correta, embora uma vez que a soma da média de cada amostra iria introduzir uma quantidade razoável de erro de arredondamento. Hmm. Gostaria de saber se seperating a parte fracionária de toda a parte iria ajudar. Divida a parte inteira de cada número pela contagem. Manter três somas correntes: 1) A média das partes inteiras, 2) O restante de cada divisão, e 3) A parte fracionária de cada número. Cada vez que a parte inteira de um número é dividida, o resultado da parte inteira é adicionado à soma corrente média e o restante é adicionado à soma corrente restante. Quando a soma corrente restante obtém um valor maior ou igual à contagem, a sua divisão pela contagem com o resultado da peça inteira adicionada à soma média corrente e o restante adicionado à soma restante em curso. Também, em cada cálculo, a parte fracionária é adicionada à soma de corrida fracionária. Quando a média é terminada, a soma corrente restante é dividida pela contagem e o resultado é adicionado à soma média corrente como um número flutuante. Por exemplo: Agora o que fazer com a soma de execução fracionada. O perigo de estouro é muito menos provável aqui, embora ainda possível, então uma maneira de lidar com isso seria dividir a soma de execução fracionária pela contagem no final e adicioná-lo ao nosso resultado: Uma alternativa seria verificar a execução fracionária Soma em cada cálculo para ver se ele é maior ou igual a contar. Quando isso acontece, basta fazer a mesma coisa que fazemos com o restante executando soma. Excelente Jomit Vaghela 6-Mar-07 20:00 Eu gostei do que você disse pequenos trabalhos rapidamente se transformar em grandes empregos. Pensar em otimização durante a codificação é uma boa prática. Grande esforço e explicação,
No comments:
Post a Comment